199 words
1 minutes
삼각함수 공식
2024-09-10
No Tags

e 44자리#

2.7182818284 5904523536 0287471352 6624977572 4709369995

시카노코노코 COS TAN TAN#

  1. sin(x+y)=sin(x)cos(y)+cos(x)sin(y)\sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y)

  2. cos(x+y)=cos(x)cos(y)sin(x)sin(y)\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y)

  3. sin(2x)=2sin(x)cos(x)\sin(2x) = 2 \sin(x) \cos(x)

  4. cos(2x)=cos2(x)sin2(x)=2cos2(x)1=12sin2(x)\cos(2x) = \cos^2(x) - \sin^2(x) = 2 \cos^2(x) - 1 = 1 - 2 \sin^2(x)

  5. tan(2x)=2tan(x)1tan2(x)\tan(2x) = \dfrac{2 \tan(x)}{1 - \tan^2(x)}

  6. sin(3x)=3sin(x)4sin3(x)\sin(3x) = 3 \sin(x) - 4 \sin^3(x)

  7. cos(3x)=4cos3(x)3cos(x)\cos(3x) = 4 \cos^3(x) - 3 \cos(x)

  8. sin(x+y)+sin(xy)=2sin(x)cos(y)\sin(x + y) + \sin(x - y) = 2 \sin(x) \cos(y)

  9. sin(x+y)sin(xy)=2cos(x)sin(y)\sin(x + y) - \sin(x - y) = 2 \cos(x) \sin(y)

  10. cos(x+y)+cos(xy)=2cos(x)cos(y)\cos(x + y) + \cos(x - y) = 2 \cos(x) \cos(y)

  11. cos(x+y)cos(xy)=2sin(x)sin(y)\cos(x + y) - \cos(x - y) = -2 \sin(x) \sin(y)

  12. sin(x)+sin(y)=2sin(x+y2)cos(xy2)\sin(x) + \sin(y) = 2 \sin\left(\dfrac{x + y}{2}\right) \cos\left(\dfrac{x - y}{2}\right)

  13. sin(x)sin(y)=2cos(x+y2)sin(xy2)\sin(x) - \sin(y) = 2 \cos\left(\dfrac{x + y}{2}\right) \sin\left(\dfrac{x - y}{2}\right)

  14. cos(x)+cos(y)=2cos(x+y2)cos(xy2)\cos(x) + \cos(y) = 2 \cos\left(\dfrac{x + y}{2}\right) \cos\left(\dfrac{x - y}{2}\right)

  15. cos(x)cos(y)=2sin(x+y2)sin(xy2)\cos(x) - \cos(y) = -2 \sin\left(\dfrac{x + y}{2}\right) \sin\left(\dfrac{x - y}{2}\right)

  16. cos2(x)=1+cos(2x)2\cos^2(x) = \dfrac{1 + \cos(2x)}{2}

  17. sin2(x)=1cos(2x)2\sin^2(x) = \dfrac{1 - \cos(2x)}{2}

  18. tan2(x)=1cos(2x)1+cos(2x)\tan^2(x) = \dfrac{1 - \cos(2x)}{1 + \cos(2x)}

  19. sinα=aa2+b2, cosa=ba2+b2,sinβ=ba2+b2, cosβ=aa2+b2 일때,asinx+bcosx=a2+b2(aa2+b2sinx+ba2+b2cosx)=a2+b2(sinαsinx+cosαcosx)=a2+b2sin(xα)asinx+bcosx=a2+b2(aa2+b2sinx+ba2+b2cosx)=a2+b2(cosβsinx+sinβcosx)=a2+b2sin(x+β)\sin \alpha=\dfrac{a}{\sqrt{a^2+b^2}},\ \cos a =\dfrac{b}{\sqrt{a^2+b^2}}, \\ \sin \beta=\dfrac{b}{\sqrt{a^2+b^2}},\ \cos \beta=\dfrac{a}{\sqrt{a^2+b^2}}\ 일 때, \\ a\sin x+b\cos x=\sqrt{a^2+b^2}\Bigg(\dfrac{a}{\sqrt{a^2+b^2}}\sin x+\dfrac{b}{\sqrt{a^2+b^2}}\cos x\Bigg) \\ = \sqrt{a^2+b^2}(\sin\alpha \sin x+\cos\alpha\cos x)=\sqrt{a^2+b^2}\sin(x-\alpha) \\ a\sin x+b\cos x=\sqrt{a^2+b^2}\Bigg(\dfrac{a}{\sqrt{a^2+b^2}}\sin x+\dfrac{b}{\sqrt{a^2+b^2}}\cos x\Bigg) \\ = \sqrt{a^2+b^2}(\cos \beta \sin x+\sin \beta\cos x)=\sqrt{a^2+b^2}\sin(x+\beta)

삼각함수 공식
https://c0degolf.github.io/posts/ilsang/costantan/costantan/
Author
c0degolf
Published at
2024-09-10